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Introduction

+ The design of a digital control system begins with an accurate model of the process to be controlled.
+ Then a control algorithm is developed that will give the required system response.

+ The loop i1s closed by using a digital computer as the controller.

+ The computer implements the control algorithm in order to achieve the required response.



Introduction

+Several methods can be used for the design of a digital controller:

+ A system transfer function is modelled and obtained in the s-plane. The transfer function is then transformed
into the z-plane and the controller 1s designed in the z-plane.

+ System transfer function is modelled as a digital system and the controller is directly designed in the z-plane.

+ The continuous system transfer function is transformed into the w-plane. A suitable controller is then designed
in the w-plane using the well-established time response (e.g. root locus) or frequency response (e.g. Bode
diagram) techniques.

+ The final design is transformed into the z-plane and the algorithm is implemented on the digital computer.



Introduction

+ We are mainly interested in the design of a digital controller using the first method, i.e. the controller is
designed directly in the z-plane.

+ The procedure for designing the controller in the z-plane can be outlined as follows:

1. Derive the transfer function of the system either by using a mathematical approach or by performing a
frequency or a time response analysis.

2. Transform the system transfer function into the z-plane.
Design a suitable digital controller in the z-plane.

4. Implement the controller algorithm on a digital computer.



Introduction
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Figure 9.1 Discrete-time system with analog reference input
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Figure 9.2 Discrete-time system with digital reference input



Introduction

The closed-loop transfer function of the system in Figure 9.3 can be written as

Y(2) D(z)HG(7)

= —. (9.1)
R(z) 1+ D(2)HG(2)
Now, suppose that we wish the closed-loop transfer function to be 7T(z), 1.e.
I'(z) = M) (9.2)
YR '

Then the required controller that will give this closed-loop response can be found by using
(9.1) and (9.2):

l I'(z)

p— M [9-3}
HG(z)1 —T(2)

D(z)

R(z) 1s the reference input, £ (z) is the error signal, U (z) is the output of the controller, and Y (z) 1s the output
of the system. HG(z) represents the digitized plant transfer function together with the zero-order hold.
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Figure 9.3 Discrete-time system

The closed-loop transfer function of the system in Figure 9.3 can be written as

Y(2) D(z)HG(7)

= —. (9.1)
R(z) 1+ D(2)HG(2)
Now, suppose that we wish the closed-loop transfer function to be 7T(z), 1.e.
I'(z) = M) (9.2)
YR '

Then the required controller that will give this closed-loop response can be found by using
(9.1) and (9.2):

l I'(z)

D(z) = *
HG(z) 1 —T(2)

(9.3)

Equation (9.3) states that the required controller D(z) can be designed if we know the model of the process. The
controller D(z) must be chosen so that it is stable and can be realized. One of the restrictions affecting realizability i1s
that D(z) must not have a numerator whose order

exceeds that of the denominator.



Dead-Beat Controller

The dead-beat controller is one in which a step input is followed by the system but delayed by one or more
sampling periods, i.e. the system response 1s required to be equal to unity at every sampling instant after the
application of a unit step input.

The required closed-loop transfer function is then
T(z)=z"%, wherek > 1. (9.4)

From (9.3), the required digital controller transfer function is

I T(z 1 7k i
D(z) = @) - ). (9.5)
HG(2)1 —=T(z) HG(z) \1 —=z7*

An example design of a controller using the dead-beat algorithm 1s given below.




Dead-
Beat
Controller

Example 9.1

The open-loop transfer function of a plant is given by

1.’"

G(s) = .
(s) 1 + 10s

Design a dead-beat digital controller for the system. Assume that T = 1 s.

Solution

The transfer function of the system with a zero-order hold is given by

| —esT

E,—ls'
Gt =00-=-z7HZ
s [ }} ;—} L‘{l + 105)}

I ) 1/10
HG(z) = (1 —z""H77°Z =(1—-z"H77%Z / :
s( s s(s 4+ 1/10)

HG(z) = Z {

or

From z-transform tables we obtain

L 7(1 — e 0h 3 (1 —e 0
HG(z) = (1 —z7Hz 7?2 =7

or
0.095773

HOR) = T 00041




Dead-Beat Controller

From Equations (9.3) and (9.5),
| T(zy  1-0904z7" 7

D I = - — .
) HG(z) 1 = T(z2) 0.095z73 1 —z7*

For realizability, we can choose k > 3. Choosing £ = 3, we obtain
| —0.904z7" 773

D7) =
(2) 0.095z73% |1 — 773

or
22— 0.9047?
C0.095(z3=1)°

D(z)



Dead-Beat Controller

Step Response
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Figure 9.5 Step response of the system
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Figure 9.4 Block diagram of the system of Example 9.1

The output response is unity after 3 s (third sample) and
stays at this value



Dead-Beat Controller —

It is important to realize that the response is correct only at the sampling
instants and the response can have an oscillatory behaviour between the

sampling instants. il

Am plitude

The control signal applied to the plant is shown in Figure 9.6. Although
the dead-beat controller has provided an excellent response, the
magnitude of the control signal may not be acceptable, and it may even
saturate in practice.

The dead-beat controller is very sensitive to plant characteristics and a small

change in the plant may lead to ringing or oscillatory response. e

Time (8C)

Figure 9.6 Control signal



Dahlin controller

+ The Dahlin controller is a modification of the dead-beat controller and produces an exponential response
which is smoother than that of the dead-beat controller.

+ The required response of the system in the s-plane can be shown to be

| ¢ @S

Y(s)=— ‘
() s 14+ 5q

where a and g are chosen to give the required response (see Figure 9.7). If we leta = kT, then
the z-transform of the output is

~—k—1 —T/c
Z (1 —e™"/9)

(I —z7H(1 —e~T/az7h
and the required transfer function is

Y(z) N1 —e7 Ty (1 =271

(7)) = .
) R(z) (1 —z7")(1 —e-T/iz7h) 1




Dahlin controller

A
or
N1 =Ty E
T(z)= [ — o—T/qg—1 - Time
< . constant q
Using (9.3), we can find the transfer function of the required controller: :
1 T(2) | 7R — e/ : :
D(z) = = —T/q ——1 —T/gy-—k—1"
HG(z) 1 —=T(z) HGZ)1 —e Hz7! —(1 —e~1/4)z 0 a q

Figure 9.7 Dabhlin controller response



Dahlin controller: example

Example 9.2

The open-loop transfer function of a plant is given by

—2%

S 1+10s
Design a Dahlin digital controller for the system. Assume that 7 = 1 s.

G(s)

Solution

The transfer function of the system with a zero-order hold is given by

]_(_J_‘."‘T | E_,—Ei
HGZ) =Z1— Gyl =1 —zhzl S
@ { 5 (”} ( } is(1+1m)}

or

5 1/10
HG(z)=(1 -z hH77%Z = (1 — :_'):_“Z{ / }

l:s[l —|—an€)} s(s +1/10)

From z-transform tables we obtain

HG(z) = (1 —7 V)72 —¢ -

or




Dahlin controller: example

For the controller, if we choose ¢ = 10, then

I T 1-090477" 7F1 (1 — e

D(z) = —
2) HG(z) 1 —T(z2) 0.095z73 1 —e0lz=1 (] — ¢ 01)z=k-1

or
| —0.90477! 0.0957 %1
D[:) — - _q —_ - e (b
0.095z=3 1 —0.904z=! — 0.0957— !

For realizability, if we choose k = 2, we obtain

0.0957% — 0.08587>

D(z) = 3 —— .
0.095z7 — 0.0858z° — 0.0090

Figure 9.8 shows the step response of the system. It is clear that the response is exponential as
expected.



Dahlin controller: example
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Figure 9.8 System response with Dahlin controller
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Dahlin controller: example

Step Responze
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Although the system response is
Slower than dead-beat
controller, the controller signal 0.992
is more acceptable.
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Figure 9.9 Controller response



Pole-Placement Control - Analytical

+ The response of a system is determined by the positions of its closed-loop poles. Thus, by placing the poles at
the required points we should be able to control the response of a system.

Given the pole positions of a system, (9.3) gives the required transfer function of the controller

as

_ 1 1'(z)
 HG() 1 =T(z)

D(z)

T(z) 1s the required transfer function, which is normally in the form of a polynomial.
The denominator of 7 (z) is constructed from the positions of the required roots.
The numerator polynomial can then be selected to satisfy certain criteria in the system.



Pole-Placement Control: example

Example 9.3

The open-loop transfer function of a system together with a zero-order hold is given by

HG ) — 0.03(z + 0.75)
T 2152405

Design a digital controller so that the closed-loop system will have ¢ = 0.6 and wy = 3 rad/s.
The steady-state error to a step input should be zero. Also, the steady-state error to a ramp
input should be 0.2. Assume that T = 0.2 s.

Solution

The roots of a second-order system are given by

210 = e COn =IO TN I — pmlnl (cos @, T/ 1 — 22 £ jsinw, Ty/1 — £2).



Pole-Placement Control: example

Thus, the required pole positions are
210 = ¢ PO T02(605(0.2 x 3) £ jsin(0.2 x 3)) = 0.526 & j0.360.
The required controller then has the transfer function

bo+ b,z V4 bz 2+ bz 4. ..
(z —0.526 4+ j0.360)(z — 0.526 — ;j0.360)

I'(z)=

which gives
by + biz7 V4 bz 24 b33+ ...
B | — 1.052z7" + 0.405z72

We now have to determine the parameters of the numerator polynomial. To ensure realizability,
by = 0 and the numerator must only have the b, and b;terms. Equation (9.6) then becomes

I (z) (9.6)

biz7 '+ byz7?
T 11— 1052271 4 0.405:72
The other parameters can be determined from the steady-state requirements.
The steady-state error 1s given by

E(z) = R(Q[1 = T(2)].

T(z) (9.7)



Pole-Placement Control: example

For a unit step input, the steady-state error can be determined from the final value theorem. i.e.

oz —1 z
E,,-Szllml — — l[U]

or

From (9.8), for a zero steady-state error to a step input,

T'(l)=1
From (9.7), we have
[ b
(1) = M+ Da _
0.353
or
by 4+ b, = 0.353, (9.9)
and
biz+1
T(z) = 12 + 52 . (9.10)

72 — 1.0527 + 0.405



Pole-Placement Control: example

[f K, is the system velocity constant, for a steady-state error to a ramp input we can write

Ey =1im S0 T2y =L
B 7—1 Z (z —1)? ) K,
or, using L*Hospital’s rule,
dT ]
dzl._, KT



Pole-Placement Control: example

Thus from (9.10),

dT
dz

_ by(z2 = 1.0522 +0.405) — (b2 + by)(27 — 1.052) 1 0.2 |

(z2 — 1.052z + 0.405)2 K, T 0.2

=1

giving

0.353by — (b1 + 02)0.948

—1
0.3532

or

0.595b; + 0.948b, = 0.124, (9.11)
From (9.9) and (9.11) we obtain.

by = 0.596 and b, = —0.243.

Equation (9.10) then becomes

0.5967 — 0.243
T(z)= — —, (9.12)
7¢ — 1.0527 4+ 0.405




Pole-Placement Control: example

Equation (9.12) 1s the required transfer function. We can substitute in Equation (9.3) to find
the transfer function of the controller:

I T(2) 72 —1.52405 T(2)
HG(z) 1 —T(z) ~ 0.03(z4+0.75) 1 = T(2)

D(z) =

Or,

D(z) = 72— 152405  0.596z —0.243
T 0.03(z +0.75) 72 — 1.6487 4 0.648

which can be written as

0.5967° — 1.137z% + 0.6627 — 0.121
D(z) = —= s i 9.13)
0.03z3 —0.027z2 — 0.018z + 0.015

The step response of the system with the controller is shown in Figure 9.10.




Pole-Placement Control: example

Step Response
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Figure 9.10 Step response of the system
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